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Abstract Optimal separation of two clusters of normalized vectors can be performed in a 
neural network with adjustable threshold and weights, which is trained to maximum stability~ 
Generalization from arbitrarily selected training clusters to a given bipartitioning of input space 
is studied. The network's threshold becomes a global optimization (and order) parameter. This 
causes the generalization ahility to increase rapidly with the dismce of the cluster separadon 
plane f" the origin. Separation is shown to be stochastic for small and dereninistic for large 
training cluster sizes. 

1. Introduction 

In any problem of inferring parameters of an information processing device from a set of 
known example patterns, the key issue is good generalization. That is, a high probability 
of identifying an unknown pattern correctly. This paper adresses the issue of generalization 
for the most general of linear threshold classifiers, which include weighted sums of input 
and a global activation threshold. The examples used for training are required to be linearly 
separable, such that the network can actually perform the inference with zero training error. 

Recently, generalization has been studied [l] in a less general class of neural networks, 
namely those with zero activation thresholds. These networks were trained with various 
algorithms (Hebb, pseudoinverse, optimal stability), where the optimally stable network 
generalized best. 

However, the separation of two classes of network output may require a non-zero 
threshold. For example, this is the case already for such simple tasks as the two-dimensional 
AND or OR functions in the (-1.1)-representation. 

Optimal separation of the two output clusters cannot be performed by existing algorithms 
which simply treat the network threshold as an additional input dimension. When doing 
so, the algorithm will find one solution to the separation problem. However, the separation 
achieved will not be optimal, since the threshold dimension just becomes another intensive 
(local) variable. Optimal separation can be achieved only through correct treatment of the 
threshold as an extensive (global) variable, which is well reflected in the course of this 

Recently, suitable algorithms have been proposed [2,3] which treat the threshold 
correctly, and which meet theoretical stability predictions [4] for large neural networks. 
Here, the generalization ability of those networks is analysed. 
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2. Problem and solution 

The basic problem can be formulated in terms of neural networks as well as in geomehic 
terms. This will show exploitable analogies and allow an interpretation of the results beyond 
the limits of neural networks. 

In neural network terms, a teacher network with N-dimensional weight vector B and 
threshold U is given. A student network is going to select randomly UN examples (or 
questions) cB with components (r = i l ,  j = 1.. . . , N. The examples belong to one of 
two classes labelled z, = il which the teacher answers according to 

The student learns these examples by selecting his network weights J and threshold T 
such that the examples are stored with maximum stability A = Aopr. i.e. 

Aapr = min JL ( J . r,& 1-71 - f i T r , )  = ~ max J’J’} min B . (I . zf, IJ’I - f iT ’ z , )  (2) 

which satisfies a correct output ((z = r, , p = 1,. . . , p ) :  

This can be described in geometric terms as well. The two sets of examples belonging 
to the two classes of output form two clusters. The task then is to separate these clusters 
such that the gap between their convex hulls becomes maximal. The gap size is exactly 
2A,,,, the normal direction from one convex hull to the other is J ,  and the centre of the 
gap is at distance T from the origin. The hyperplane which is the centre of the gap is then 
given by all points satisfying 

1 
- J * E - T = O .  
f i  (4) 

Generalization may also be described in both terms. In a neural network, the 
generalization ability G is defined as the probability that, after learning, the student’s answer 
.Si to any question S, is given correctly (S i  = z,), i.e. in accordance with the teacher. 
In geometric terms, it is the probability that, after selecting the hyperplane (4), the class r, 
given by the bipartitioning of input space (1) is identified correctly by equation (3) for any 
point S,. In both formulations, the generalization ability is given by 

This average will be performed now. Since only the directions of J and B are important, 
one can scale I JI2 = lB12 = N. Using an integral representation for the argument of the 
@-function gives for large N: 

7d.x r d y  O((x - U ) ( y  - T)) 
-m -m 
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= T d x  r d y  O((x - U ) ( y  - T ) )  
-m -m 

. N  
I 

x r d w  r d q  exp { -iwx - iqy - - 2N (wBj + q Jj)* 
* -m j=1 

= G  

with the Gaussian measure Dz = I/& exp(-z2/2), the integration areas 
~~ 

A* = {x, ylx = H J J ~ " .  . .a; y = *T - rx/-. . .mi 

and r = cos(J, B). 
Thus G(U, a) can be evaluated once r and T are known. These parameters can be 

derived from a calculation [4] of the volume V available for a solution (3) in the phase 
space ( J ,  T )  with stability A > 0 

X S ( l J I Z  - N). (7) 
For an extensive number of learning patterns, In(V) becomes self-averaging. Since 

the space of weights is connected and convex 131, In(V) can be computed by a replica- 
symmetric calculation, where the saddle point is obtained with respect to replica-symmetric 
order parameters 

the averages being +&en with respect to replicas a, b. Note that T becomes a global 
parameter optimized at the saddle point. This is in contrast to simply treating the threshold 
as an additional ('augmented') input dimension. Maximum stability now corresponds to 
V --f 0. After standard integrations (e.g. see [I] for techniques) one obtains the conditions 
for G as 

A + (T - wr) sign (w - U) - z-) 
01 

-wsign(w-U)+- Ji=7 zr 1 
DZ DW A + (T - wr) sign (w - U) - z-) sign (w - U) 

A = (2 ,  ~ I A  + (T - wr) sign(w - U) - z , h T  > 0). 

O = / L  ( 
with the integration area 

Equations (6) and ( 9 x 1  1) can be solved numerically for r, T and A as functions of CY and 
U. The generalization ability resulting from these parameters is shown in figure 1. 
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Figure 1. Generaliration ability as a function of capacity for various teacher thresholds U. 
Generahation converges to 1 for U + m. For U = 1, simulation results ax also given for a 
netwok with 104 neurons, averaged over 40 runs. 

3. Interpretation 

It is first of all s w n g  that in networks with threshold, the generalization ability initially 
decreases with 01. This effect was not observed in networks without thresholds [l]. 
Furthermore, generalization is improved by an optimally chosen threshold throughout. In 
particular, the generalization ability at 01 = 0 is already higher than the ‘random’ result 
G = 0.5 and increases with the teacher’s threshold. These effects demand some detailed 
interpretation. 

The non-monotonous behaviour can be explained from the student’s threshold T(u, U )  
determined &om equations (9x11) (figure 2). For U # 0, T / U  + CO as 01 + 0. This 
again underlines the global role of T. For small 01, there is very little information at 
hand for the student about the direction of B. (In fact, r + 0 and A + CO as 01 + 0.) 
However, since U # 0, the student will detect already from a few teacher’s answers that the 
output is biased. Thus a stochmfic best choice is to set all outputs to one value according 
to the teacher’s bias, which is achieved by T / U  + CO and gives (from equation (6)) a 
generalization 

Note from the scalinz of equation (1) that the onset of generalization improvement is already 
at very low thresholds since IUI < f i  is possible. 
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Figure 2. Deviation of student (T) from teacher (U) threshold as a function of capacity for 
various teacher thresholds U. For U # 0. TIU becomes infinite for a + 0. 

Furthermore, one can evaluate G at'small 01 if one expands equations (6) and (9)- 
(11) about the known results r + 0, A + 00  and^ T / U  + CO. With the parameter 
m = 2erf(lUl) - 1 = 1 which is identical to the absolute output bias (see equation (IS)), 
one obtains (for derivations see the appendix) 

1 
A =  

& d K 2  

and from equations (13H15), 

Equation (16) shows the decrease of G with 01, the initial slope being 8G/arul,,o = 0, and 
it also shows that lG(01) - G(a = 0)l decreases with IU/. This is exactly the behaviour 
observed in the curves of figure 1. 

The initial decrease of G with 01 may be interpreted geometrically. With small but 
increasing 01, the threshold T is forcibly reduced since all examples have to be mapped 
correctly. This gradually removes the initial stochastic behaviour and therefore lowers G. 
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The onset of the competing effect of deterministically given J and T (which increase 
G again) is only to be observed at high a. The reason is that in order to ‘bind‘ the ( N  - 1)- 
dimensional separating plane to its correct position, a high number of examples (a = ql))  
is required. Furthermore, only a number ace N examples which are ‘close’ to the gap 
between the two clusters are effective for the binding. This is reflected in the well known 
fact [5]  that only a subset of patterns, 2 / N  < a,r 4 1, determine the separation plane. 
With increasing U ,  a higher proportion of the randomly selected examples will be far off 
the gap position and therefore will not contribute to a,*. This explains that with increasing 
U ,  the minimum of G(a) is shifted to higher (Y (see figure 1). 

Similarly, for high a one can perform expansions about r = 1, A = 0 and T = U .  A 
self-consistent calculation yields for a >> eu’? 

1 1 0.501 G = 1 - - b2eb2/’+ - f(U) N 1 - - 
a a2 a 

where b N 0.639 is obtained analytically (see appendix). The derivation of this number 
is valid for networks and rules with or without threshold. From computer simulations, the 
factor a(1 - G )  was claimed [6] to be 0.57, in contrast to the analytic value of 0.501 
obtained here. 

Note that G does not depend on U to leading order in l /a,  which clearly shows the 
deterministic character of generalization: for large a, the examples fill the input space 
quasi-homogenously. Since the direction J is almost correctly determined by the student 
network (in fact, 1 - r c( l /az ,  see appendix), the allowed variation of T only amounts to 
O(l/a2) in G .  The student network is therefore deterministically given by the examples. 
Furthermore, note that the generalization ability almost reaches the Bayes optimal result of 
G = 1 - 0.44/a obtained numerically in 161. Thus Bayes optimal learning will improve 
generalization only very slightly, but at the cost of sampling a (high) number of possible 
solutions in the full version space [71. 

The theoretical results for G can be verified by simulations. For U = 1, a N randomly 
selected examples were used for the student network‘s training which was performed with 
the generalized minimum overlap algorithm described in 131. The generalization ability 
was then determined as the average O(t, 8) over 500 randomly selected questions. The 
simulation results agree well with the theoretical predictions (figure 1). 

4. Conclusion and outlook 

The optimal cluster separation network has been shown to generalize from examples obeying 
a teacher’s rule. Generalization is stochastic for small a and deterministic for large a. The 
influence of the teacher’s threshold U in the stochastic regime has been quantified, in the 
deterministic regime it bas been shown that U does not influence generalization to lowest 
order in l /a .  Simulations verify the theoretical results. Optimal cluster separation networks 
are able to improve generalization considerably by taking into account the teacher’s threshold 
properly. 

In geometric terms, the same conclusions hold. The equivalent task there is to find 
the correct bipartitioning of input space by inferring from U N  randomly drawn normalized 
examples with given classification, where U corresponds to the distance of the bipartitioning 
hyperplane from the origin. 

Since the latter formulation of the problem is more general, there is a wider range 
of applicability. For example, the problem could be defined in process control, where an 
allowed range of parameter values for which the system is stable has to be separated as 
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far as possible from a forbidden range where the system is unstable. By the equivalence 
of the two problems, this task can be solved in a linear threshold model by a neural 
network as described here. In this context, the present paper gives the probability G of 
correctly classifying an unknown situation as forbidden or allowed. Since allowed and 
forbidden situations usually do not occur with the same frequency, this probability will 
rise considerably with the difference in frequencies (rw), or absolute output bias m = I(r,$. 
This can be shown under the assumption that the examples are representative for all possible 
situations, and, as in (12), 

Thus the difference in frequencies, which can be measured from a few examples, can be 
mapped to a threshold U* = e K ' ( f  (1 + (rw))). In turn, the respective curve for G(0r) 
as shown in figure 1 then predicts the generalization ability as a function of a!. If the 
separation of parameter ranges is to be done with a confidence level of C (0.95, say), i.e. 
with a probability C of classifying any parameter vector correctly, one can use figure 1 to 
predict that the number of examples that have to be known (i.e. measured) for this purpose 
is N . G-'(G = C, U = U*). 
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Appendix 

Expansion for small OL 

One first performs the z-integration in equations (6). (9), (10) and (11). The result is 

U 1 - = 
a! -m 

Dw[erfA+ + A + f ( A + ) ]  -!- 1 Dw[erf A- f A - f ( A - ) ]  
U 

O = c D w  f ( A + ) [ - w m + A + r ] + l  cu Dw f ( A - ) [ - w m + A - r ]  (A3) 

A h i  (T - w r )  1 - 9 f 2  f (x )=xe r fx+-e  . Jz;; A* = 

In the limit T + m, A -+ 00, r + 0, one obtains the result for small a!. Then A+ and A- 
reduce to A* = A i T. Since,A+ + m, from equation (A4) one finds that also A- -+ 00 

is required since both sides of the equation must approach infinity. The leading terms in 
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equations (A4) and (A2) then give 

(A + T) erf(-U) = (A - T) erf(V) 
1 
- = A: erf(-U) +A? erf(U) = (Az+ T’) + 2A.lTlm (A71 

where m = Zerf(lU[) - 1 as before. Combining equations (A6) and (A7) results in A and 
T as in equations (13) and (14). Turning to the expansion of equation (A3), one obtains 
the leading terms 

oc 

Inserting A gives the expresssion (15). G can now be obtained after rewriting (6) as 

The leading terms are 

m e-T2/2 
G=erf(lUI)-merf(-ITI) =erf(lUl)--- (A91 6 IT1 

where the approximation of the error function for large negative arguments has been used. 
After insertion of T one obtains equation (16). 

Expansion for high oc 

For high 01, equations (9). (10) and (11) must be expanded in the limit r + 1,  A + 0 and 
T + U. Guided by numerical results from computer simulations, we will self-consistently 
find that Q A-(w = U) approach a finite non-zero value. This 
can be seen by transforming the variable of integration to A+ (resp. A-)  and rename it z. 
Writing R = m, the three saddle-point equations read 

A+(w = U) and b 

_-  dz exp (i) [R(Q - E) + U12[erf(z) + zf(z)] Roc -la 
b 

dz exp ($R(b - z) - U]’) [erfcz) + zf (z)] +JL ~~ 

dzexp(;[R(a-z) + V]’)[-R’(a-z) -~RU+z]f(z)  

b 
dz exp (i[R(b - z) - U]’) [ -RZ(b - z) + RU +z]f (z) (All)  

= -la 
b 

dz exp (;[R(a - z )  + VI’) f(z) = / dz exp @R(b - z )  - VI’) f(z) . (A12) 

For r -+ 1, R + 0, and the R-terms in numerators can be neglected if a, b are finite. Then 
equation (A12) immediately gives Q = b, which after inserting into equation (All)  yields 

-m 
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Equation (A13) is satisfied by the required b N 0.639 which self-consistently confirms the 
above ansatz. With the help of ( A l l ) ,  equation (A10) can be reduced to an expression for 
R: 

where, in the last step, equation (A13) was used. This finally gives 

U2 2 a2 
( ~ 1 5 )  

r = l - i R z = l - - -  * lZ b4e(bz+u2) y 1 - 1.236 eu2 

Note that in the derivation of equation (A14). it is necessary that a >> e''/' which is 
important for estimations by computer simulations. For G, equation ( A l )  can he rewritten 

G = 1 - hm Dw ( 1  - erf (5)) - [I Dw ( 1  - erf (s)) . (A16) Ji=7 Ji=7 
For r + 1, a change of variables to z = (w 
neglecting terms proportional to R in the integrand gives 

r T ) / m ,  rewriting r into R and 

where from the definitions of a and b the lower integration limit is 
(0.5(b - a )  + U R ) / ( l  + R2) + 0. 

Inserting R from equation (A14) then gives the desired result (17). 
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